System Assessments

Have you ever woken in the middle of the night in a cold sweat wondering if your plant is using more energy than it should, putting you at a disadvantage as compared to your competition? Even if your energy monitoring or energy management system is in place you may not have the required insight to improve your performance and keep you competitive.

For decades, evaporative cooling has been the principal means to regulate the temperature of buildings. And with more than 50% of total building water usage dedicated to heat transfer, there are major opportunities for water savings.
Cooling towers can use several power transmission technologies, including a gear drive, belt drive, direct drive, and electronically commutated (EC) drive. Each has advantages and disadvantages. The proper selection strikes an appropriate balance of initial cost versus operating costs.
Cooling large buildings typically requires the use of air- or water-cooled chillers that produce chilled water, which then cools the air. About 39% of buildings over 100,000 square feet use chilled-water systems employing various refrigeration compressor designs.
How often do you think about your cooling tower or the fill that provides the cooling engine for your process? Unfortunately, if you’re like many plant operators, your cooling tower is but one piece of equipment in your large facility, and its ranking on your priority list is probably lower than many other expensive and more intricate pieces of equipment in your plant.
One of the biggest challenges brewers such as Coppertail face is maintaining the dedication to their brand’s mission and their loyal following, while expanding their reach and growing market share. That challenge means not compromising on ingredients and utilizing the best equipment available for the fermenting, brightening and packaging of their product. But, for any growing business, reliability, uptime and power costs must be quantified in order to maximize margins to make the business viable.
Penn State Health Milton S. Hershey Medical Center, Hershey Pa., is all about energy and resource efficiencies, which is why it adopted a new approach to managing its chilled water operation. The approach, which revolves around a software and analytics platform used to optimize three chiller plants in addition to various equipment upgrades, has allowed it to save 4.16 GWh/yr in electrical energy consumption – and shave $300,000 off of its annual electrical costs. With an incentive from the local utility of $415,799, the multi-phased initiative achieved a payback of 4.3 years. 
Penn State Health Milton S. Hershey Medical Center, Hershey Pa., is all about energy and resource efficiencies, which is why it adopted a new approach to managing its chilled water operation. The approach, which revolves around a software and analytics platform used to optimize three chiller plants in addition to various equipment upgrades, has allowed it to save 4.16 GWh/yr in electrical energy consumption – and shave $300,000 off of its annual electrical costs. With an incentive from the local utility of $415,799, the multi-phased initiative achieved a payback of 4.3 years. 
Given that HVAC systems typically account for 44% of commercial buildings’ energy consumption1, HVAC optimization should be a priority efficiency upgrade after lighting improvements and other low-hanging fruit. Full-scale HVAC optimization typically reduces energy usage and costs by 20 to 40%, improves system reliability by operating equipment more efficiently and at optimal temperatures, ensures consistently healthy air quality and building comfort, and reduces a building’s carbon footprint.
Rush University Medical Center (RUMC) is Chicago's second-largest hospital with multi-story buildings that dominate the city's medical district. But that prestigious location posed problems when RUMC's 11-story Professional Building 2 needed to replace two aging centrifugal chillers. It appeared the only alternative was to move a crane down a crowded street to lower new chillers through the roof. But some simple surgery made it possible for Smardt split-shell chillers with Danfoss Turbocor® compressors to simply take an elevator up to the penthouse mechanical room, a solution that cut installation costs while boosting energy savings.
A common misconception in plastics injection molding is that coolant temperature is the one true path to achieve productivity and profitability. The reality, however, is that turbulent flow is the primary force behind efficient cooling and a key driver in the ability to achieve operational efficiencies, increase profits and consistently produce high quality products.