

When to Install VSD Chillers

Spencer Fuller and Fred Berry, Johnson Controls Keynote Speakers

For your free subscription, please visit <u>www.coolingbestpractices.com/magazine/subscription</u>.

When to Install VSD Chillers

Spencer Fuller and Fred Berry, Johnson Controls Keynote Speakers

The recording and slides of this webinar will be made available to attendees via email later today.

PDH Certificates will be e-mailed to Attendees within two days.

For your free subscription, please visit <u>www.coolingbestpractices.com/magazine/subscription</u>.

Handouts

All rights are reserved. The contents of this publication may not be reproduced in whole or in part without consent of Smith Onandia Communications LLC. Smith Onandia Communications LLC does not assume and hereby disclaims any liability to any person for any loss or damage caused by errors or omissions in the material contained herein, regardless of whether such errors result from negligence, accident, or any other cause whatsoever.

All materials presented are educational. Each system is unique and must be evaluated on its own merits.

When to Install VSD Chillers

Introduction by Rod Smith, Publisher

Chiller & Cooling Best Practices Magazine

For your free subscription, please visit <u>www.coolingbestpractices.com/magazine/subscription</u>.

About the Speakers

Spencer Fuller

• North America Portfolio Manager for Johnson Controls

•Chiller Product Manager of YMC²

Fred Berry

• Chiller Product Manager of Large Tonnage Chillers and Electronic Products for Johnson Controls

For your free subscription, please visit <u>www.coolingbestpractices.com/magazine/subscription</u>.

YORK®

OPTIMIZING ENERGY USE WITH VSD CHILLERS

Today's Agenda

- Real World Efficiency
- Lift vs. Load
- Benefits of VSD technology
- More chillers operating is more efficient
- Constant load with VSD saves money
- Air-Cooled chillers with VSD technology
- Conclusion

Addressing Sustainability

Chiller Energy Consumption is Critical to Driving Sustainability

Total HVAC Energy Use for Commercial Building Utilizing Water Cooled Systems

Total Chiller Plant Energy Use

Understanding the Impact of Energy Efficiency

Ask the Expert

How often do we operate our buildings at design conditions?

The Operating Envelope – Chicago, IL Weather

Chillers run at "full-load design" conditions Less than 1% of the time!

The Operating Envelope – New York City, NY Weather

Chillers run at "full-load design" conditions Less than 1% of the time!

The Operating Envelope – Las Vegas, NV Weather

The Operating Envelope – Houston, TX Weather

Centrifugal Chillers in Today's Complex Buildings How They Work

Capitalizing on Part Load Conditions

Lowering Condenser Water Temperature

Real World Energy Performance Capitalizing on Part Load Conditions

Johnson 💥

Rule of Thumb

Component power

- Cooling Tower = 5hp/100ton
- Pumps (2x) = 10hp/100ton
- Chiller = 70-80hp/100ton

Chiller efficiency improvements

- 1 degree colder ECWT is up to
 2% efficiency improvement
- 1 degree warmer LCHWT is up
 - to 3% efficiency improvement

Rule of Thumb

Component power

- Cooling Tower = 5hp/100ton
- Pumps (2x) = 10hp/100ton
- Chiller = 70-80hp/100ton

Ex: 500 TR Chiller

- Cooling Tower = 25hp = 18.75kW
- Evap Pump = 25hp = 18.75kW
- Cond Pump = 25hp = 18.75kW
- Chiller = 390hp = 292.5kW

Chiller efficiency improvements

- 1 degree colder ECWT is up to
 - 2% efficiency improvement
- 1 degree warmer LCHWT is up
 - to 3% efficiency improvement

Load reduction 100% to 70% 100% = 0.5261 kW/ton 70% = 0.4915 kW/ton Efficiency improvement of 6.6%

Load reduction 100% to 70% 100% = 0.5261 kW/ton 70% = 0.4915 kW/ton Efficiency improvement of 6.6%

Capitalizing on Part Load Conditions -ECWT vs kW/ton

Capitalizing on Part Load Conditions -ECWT vs kW/ton

Traditional – Constant Speed w/ Fixed Orifice

50%	Load	
100%	Load	
80%	Load	

New - Constant Speed w/ Variable Orifice

50%	Load	
100%	Load	
80%	Load	

Capitalizing on Part Load Conditions -ECWT vs kW/ton

Controls

Capitalizing on Part Load Conditions -ECWT vs kW/ton

Controls

Capitalizing on Part Load Conditions -ECWT vs kW/ton

Traditional – Constant Speed w/ Fixed Orifice
50% Load
100% Load ———
80% Load — —
New - Constant Speed
w/ Variable Orifice
w/ Variable Orifice
w/ Variable Orifice 50% Load 100% Load
w/ Variable Orifice 50% Load 100% Load 80% Load

Capitalizing on Part Load Conditions -ECWT vs kW/ton

Controls

Capitalizing on Part Load Conditions -ECWT vs kW/ton

Capitalizing on Part Load Conditions -ECWT vs kW/ton

Traditional – Constant Speed w/ Fixed Orifice

50%	Load	
100%	Load	
80%	Load	

New - Constant Speed w/ Variable Orifice

50%	Load	
100%	Load	
80%	Load	

More efficient to run 100% than 50% load

Capitalizing on Part Load Conditions -ECWT vs kW/ton

Traditional – Constant Speed w/ Fixed Orifice

50%	Load	
100%	Load	
80%	Load	

New - Constant Speed w/ Variable Orifice

50%	Load	
100%	Load	
80%	Load	

Capitalizing on Part Load Conditions -ECWT vs kW/ton

Traditional – Constant Speed w/ Fixed Orifice

50%	Load	
100%	Load	
80%	Load	

New - Constant Speed w/ Variable Orifice

50%	Load	
100%	Load	
80%	Load	

Capitalizing on Part Load Conditions -ECWT vs kW/ton

Capitalizing on Part Load Conditions -ECWT vs kW/ton

Capitalizing on Part Load Conditions -ECWT vs kW/ton

Employing Variable Speed Technology to Maximize Efficiency

• Taking advantage of real world conditions

As weather conditions and building load change, design conditions exist only 1% of the operating hours

- Applying VSD to chillers reduces energy consumption by 30%
- Globally commissioned over 50,000 VSD
- EPA's Prestigious Climate Protection Award

YORK VSD chillers save 600,000 tons of CO_2 emissions annually

Fixed Speed vs Variable Speed

<u>% Load</u>	<u>ECWT</u>
100	85.0
90	81.0
80	77.0
70	73.0
60	69.0
50	65.0
40	65.0
30	65.0
20	65.0
15	65.0

Fixed Speed vs Variable Speed

<u>% Load</u>	<u>ECWT</u>	
100	85.0	
90	81.0	
80	77.0	
70	73.0	
60	69.0	
50	65.0	AHPI standarda limit tha
40	65.0	tower water to 65F
30	65.0	Entering Condenser
20	65.0	Water Temperature
15	65.0	

Fixed Speed vs Variable Speed

		No VSD	VSD
<u>% Load</u>	<u>ECWT</u>	KW/TON	<u>KW/TON</u>
100	85.0	0.5737	0.5823
90	81.0	0.5284	0.5147
80	77.0	0.4958	0.4512
70	73.0	0.4730	0.3900
60	69.0	0.4589	0.3367
50	65.0	0.4536	0.2876
40	65.0	0.4870	0.2914
30	65.0	0.5429	0.3284
20	65.0	0.6575	0.3777
15	65.0	0.7639	0.4357

Fixed Speed vs Variable Speed

		No VSD	VSD	
<u>% Load</u>	<u>ECWT</u>	KW/TON	<u>KW/TON</u>	<u>%SAVED</u>
100	85.0	0.5737	0.5823	-1.49
90	81.0	0.5284	0.5147	2.59
80	77.0	0.4958	0.4512	9.00
70	73.0	0.4730	0.3900	17.55
60	69.0	0.4589	0.3367	26.63
50	65.0	0.4536	0.2876	36.60
40	65.0	0.4870	0.2914	40.16
30	65.0	0.5429	0.3284	39.51
20	65.0	0.6575	0.3777	42.56
15	65.0	0.7639	0.4357	42.96

Fixed Speed vs Variable Speed

Traditional – Constant Speed w/ Fixed Orifice

50%	Load	
100%	Load	
80%	Load	

New - Constant Speed w/ Variable Orifice

50%	Load	
100%	Load	
80%	Load	

Variable Speed w/ Variable Orifice

 100% Load

 80% Load

 50% Load

Fixed Speed vs Variable Speed

Fixed Speed vs Variable Speed

Traditional – Constant Speed w/ Fixed Orifice

50%	Load	
100%	Load	
80%	Load	

New - Constant Speed w/ Variable Orifice

50%	Load	
100%	Load	
80%	Load	

Variable Speed w/ Variable Orifice

 100% Load

 80%
 Load

 50%
 Load

Fixed Speed vs Variable Speed

Fixed Speed vs Variable Speed

Fixed Speed vs Variable Speed

Traditional – Constant Speed w/ Fixed Orifice

50%	Load	
100%	Load	
80%	Load	

New - Constant Speed w/ Variable Orifice

50%	Load	
100%	Load	
80%	Load	

Variable Speed w/ Variable Orifice

 100% Load

 80%
 Load

 50%
 Load

Fixed Speed vs Variable Speed

Fixed Speed vs Variable Speed

Innovations and Product Features YORK *OptiSpeed™ VSD*

Unit mounted low voltage

- 460/575/600 V 60 hz
- 380/400 50 hz

Floor mounted medium voltage

- 2300/3300/4000/4160 60 hz
- 3300 50 hz

Floor mounted high voltage

- 6.6kV/12.4kV/13.2kV/13.8kV 60hz
- 6.6kV/10kV/11kV 50hz

Benefits

- Full OptiView Communications
- YORK patented Adaptive Capacity Control
- Self learning for maximum efficiency

Can a VSD save energy on applications with constant load year round?

Can a VSD save energy on applications with constant load year round?

- Data Center Applications
- Process Cooling Applications

Assume a 500ton YMC² Chiller (Mag Bearing)

VSD chiller only!

Evap temperature: 54/44F

Cond temperature: 85/94.3F

Constant evap and cond flow

FL: 0.5261kW/ton

IPLV: 0.3058kW/ton

Evap temperature: 54/44F

Cond temperature: 85/94.3F

Constant evap and cond flow

FL: 0.5261kW/ton

VSD chiller only!

IPLV: 0.3058kW/ton

*Values are in kW/Ton.R

Rating Program: LTS 1.0.6337

Evap temperature: 54/44F

Cond temperature: 85/94.3F

Constant evap and cond flow

FL: 0.5261kW/ton

VSD chiller only!

IPLV: 0.3058kW/ton

No HPC needed

*Values are in kW/Ton.R

Assume a 500ton YMC² Chiller (Mag Bearing)

VSD chiller only!

Evap temperature: 54/44F

Cond temperature: 85/94.3F

Constant evap and cond flow

FL: 0.5261kW/ton

IPLV: 0.3058kW/ton

No HPC needed

Assume a 500ton YMC² Chiller (Mag Bearing)

VSD chiller only!

Evap temperature: 54/44F

Cond temperature: 85/94.3F

Constant evap and cond flow

FL: 0.5261kW/ton

IPLV: 0.3058kW/ton

Process requires constant 500 tons

Assume a 500ton YMC ² Chiller (Mag Bearing)	₩	10	RK	* <u>Un</u>	<u>roject</u> : <u>it Taq</u> : vineer:			<u>Rating</u> Software	Program: L e Version: \ Date: (TS 1.0.633 (W 17.02c	14:37:10
VSD chiller only!				Cust	tomer:				<u>buto</u> r (1010112011	14.57.10
Evap temperature: 54/44F				Partload D	ata (Minim	um Conder %	iser Water LOAD	Temperatu	re)		
Cond temperature: 85/94.3F	85.00°	100% 0.5261	90%	80%	70%	60%	50%	40%	30%	20%	10%
Constant evan and cond flow	80.00°	0.4713									
Constant evap and condition	75.00°	0.4179									
FL: 0.5261kW/ton	70.00°	0.3686									
IPLV: 0.3058kW/ton	65.00°	0.3258									
Process requires constant 500 tons	55.00°	0.2800									
record required constant out tone	50.00°	0.2214									
	45.00°	0.2043									
	40.00°	0.1996									
	39.00°	0.1995									
	38.00°	0.1996									
	37.00°	0.2000									
	36.00°	0.2006									
	*Value	s are in kV	V/Ton.R								

Assume a 500ton YMC² Chiller (Mag Bearing)

VSD chiller only!

Evap temperature: 54/44F

Cond temperature: 85/94.3F

Constant evap and cond flow

FL: 0.5261kW/ton

IPLV: 0.3058kW/ton

Process requires constant 250 tons

Assume a 2x 500ton YMC² Chiller (Mag Bearing)

VSD chiller only!

Evap temperature: 54/44F

Cond temperature: 85/94.3F

Constant evap and cond flow

FL: 0.5261kW/ton

IPLV: 0.3058kW/ton

Assume a 2x 500ton YMC² Chiller (Mag Bearing)

VSD chiller only!

Evap temperature: 54/44F

Cond temperature: 85/94.3F

Constant evap and cond flow

FL: 0.5261kW/ton

IPLV: 0.3058kW/ton

*Values are in kW/Ton.R

Rating Program: LTS 1.0.6337 Software Version: YW 17.02c

Partload Data (Minimum Condenser Water Temperature) % LOAD CEFT (°F) 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 85.00° 0.5261 0.5119 0.4982 0.4915 0.4952 0.5084 0.5373 0.5953 0.7965 -80.00° 0.4532 0.4713 0.4411 0.4335 0.4310 0.4377 0.4568 0.5061 0.6496 1.303 75.00° 0.4179 0.3995 0.3866 0.3783 0.3700 0.3757 0.4214 0.3914 0.5341 1.067 70.00° 0.3686 0.3499 0.3353 0.3240 0.3163 0.3138 0.3240 0.3488 0.4028 0.8141 65.00° 0.3258 0.3046 0.2880 0.2748 0.2652 0.2580 0.2613 0.2801 0.3188 0.6505 60.00° 0.2866 0.2639 0.2443 0.2287 0.2171 0.2087 0.2059 0.2175 0.2463 0.3741 0.2510 0.2265 0.2049 0.2555 55.00° 0.1869 0.1730 0.1632 0.1571 0.1611 0.1798 50.00° 0.2214 0.1936 0.1694 0.1502 0.1338 0.1198 0.1118 0.1082 0.1173 0.1592 45.00° 0.1742 0.08250 0.2043 0.1468 0.1260 0.1030 0.08859 0.07884 0.1263 0.2195 40.00° 0.1729 0.09586 0.07135 0.08988 0.2233 0.1996 0.1481 0.1255 0.08172 0.1443 39.00° 0.1995 0.1729 0.1483 0.1262 0.09614 0.08209 0.07116 0.08865 0.1429 0.2229 38.00° 0.1996 0.1732 0.1486 0.1267 0.09662 0.07134 0.08744 0.1413 0.2225 0.08318 37.00° 0.2000 0.1737 0.1490 0.1273 0.09841 0.08454 0.07247 0.08625 0.1397 0.2220 36.00° 0.2006 0.1744 0.1495 0.1279 0.1015 0.08593 0.07361 0.08508 0.1379 0.2215

COLLIDIS

Date: 06/07/2017 14:37:10

Assume a 2x 500ton YMC² Chiller (Mag Bearing)

VSD chiller only!

Evap temperature: 54/44F

Cond temperature: 85/94.3F

Constant evap and cond flow

FL: 0.5261kW/ton

IPLV: 0.3058kW/ton

Rating Program: LTS 1.0.6337 Software Version: YW 17.02c Date: 06/07/2017 14:37:10

Assume a 2x 500ton YMC² Chiller (Mag Bearing)

VSD chiller only!

Evap temperature: 54/44F

Cond temperature: 85/94.3F

Constant evap and cond flow

FL: 0.5261kW/ton

IPLV: 0.3058kW/ton

Depending on your pumping strategy and cooling tower set up, you may have to turn on an additional pump or tower

Customer:

Project:

Unit Tag:

Engineer:

Rating Program: LTS 1.0.6337 Software Version: YW 17.02c Date: 06/07/2017 14:37:10

Running More Chillers in Part-load vs Full-load

Assume a 2x 500ton YMC ² Chiller (Mag Bearing)	*	YO	RK	[®] <u>Un</u> Eng	<u>it Taq</u> : <u>lineer</u> :			<u>Softwar</u>	e Version:) <u>Date</u> : ((W 17.02c)6/07/2017	14:37:10			
VSD chiller only!	Customer: Partload Data (Minimum Condenser Water Temperature)													
Evap temperature: 54/44F	CEFT (°F)	100%	90%	80%	70%	% 60%	LOAD 50%	40%	30%	20%	10%			
Cond temperature: 85/94.3F	85.00°			<u> </u>		<u> </u>		1	- <u>I</u>		.[]			
	80.00°													
Constant evap and cond flow	75.00°													
$EL \cdot O EQG1 k M/top$	70.00°													
FL. 0.3201KVV/1011	65.00°	5.00° Consumption of 125.5kW												
IPLV: 0.3058kW/ton	60.00°			Πρισ		20.000								
	55.00°	0.2510	0.2265	0.2049	0.1869	0.1730	0.1632	0.1571	0.1611	0.1798	0.2555			
	50.00°													
	45.00°	45.00°												
	40.00°													
Depending on your pumping strategy and cooling tower set up, you may have to turn on an additional pump or tower	39.00°		Each	YMC ²	² (2x) (consun	nes							
	38.00°	$ \begin{array}{c} $												
	37.00°													
	36.00°	Reduction of ~35%												
	*Values are in kW/Ton.R													

Project:

COLLIDIS

Rating Program: LTS 1.0.6337

Running More Chillers in Part-load vs Full-load

Running More Chillers in Part-load vs Full-load

YORK centrifugal compressor designs **DO NOT** require a <u>40,000</u> hour compressor teardown

A typical chiller requires:

- Inspection of bearing wear, gears, etc. within the driveline
- Can cost approximately \$50,000+ per chiller every 10 years (4000 run hours a year)

Additional VSD Benefits

High Power Factor

Eliminates the fear of power factor penalties by the utility company

Redesign of Air-Cooled Screw Chillers in 2004

- Removal of "Slide Valves"
 - 50% less moving parts
 - 35% less leak paths
- Compressor speed varies due to the VSD
 - Compressors are now re-engineered

Air-Cooled Chillers

Tailor and Tune

VSD technology on Air-Cooled Screw Chillers

- Vastly improves the efficiency
- Greater energy savings in the year
- Flexible configurations
- Optimization for operating conditions

YVAA Efficiency vs. Ordinary Chiller

VSD on Condenser Fans

Placement of a VSD on each condenser fan circuit improves efficiency ~10%

YLAA Model*	AHRI Tons	Fixed Speed IPLV	VSD Fan IPLV	Payback (years)**
0058HE	57.0	15.6	16.8	1.8
0092HE	85.7	16.1	17.5	1.3
0142HE	129.5	15.9	17.1	1.1
0156HE	144.5	15.5	17.1	0.7
0175HE	172.5	15.6	17.1	0.7

*listing only a few models, VSD fans applicable for both screw and scroll chillers **Payback may vary based on your building parameters

YORK Variable Speed Chiller Offering

Model YK Single Compressor

Model YKEP Centrifugal Extended Capacity

Model YD Dual Compressors

Model CYK Compound Compressors

Model OM Custom Designed

Model YMC² Magnetic Centrifugal

INSTALL CONFIDENCE

Model YVWA VSD Screw Unit

Model YVAA VSD Air-Cooled Screw Chiller

Model YVFA VSD Air-Cooled Screw Chiller w/ Integrated Free Cooling

What else utilizes VSD's in todays HVAC industry?

Conclusion

- Real World Efficiency
- Lift provided enormous energy savings on chillers
- More chillers operating is more efficient
- Constant load with VSD saves money

When to Install VSD Chillers

Q&A

Please submit any questions through the Question Window on your GoToWebinar interface, directing them to Chiller & Cooling Best Practices Magazine. Our panelists will do their best to address your questions, and will follow up with you on anything that goes unanswered during this session. Thank you for attending!

For your free subscription, please visit <u>www.coolingbestpractices.com/magazine/subscription</u>.

Thank you for attending!

The recording and slides of this webinar will be made available to attendees via email later today.

PDH Certificates will be e-mailed to Attendees within two days.

For your free subscription, please visit <u>www.coolingbestpractices.com/magazine/subscription</u>.

December 2017 Webinar IoT and Compressed Air Management Systems

Tim Dugan Compression Engineering Corporation Keynote Speaker Sponsored by

Built for a lifetime.

Thursday, December 14, 2017 – 2:00 PM EST Register for free at www.airbestpractices.com/magazine/webinars