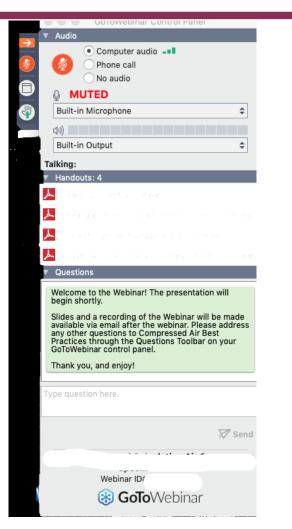
Thermal Performance of Evaporative and Dry Cooling Systems

Clayton Penhallegon, Jr., PE Integrated Services Group *Keynote Speaker*

The recording and slides of this webinar will be made available to attendees via email later today.

PDH Certificates will be e-mailed to attendees within 2 days.

BEST PRACTICES EXPO & CONFERENCE CABPEXPO.COM COMPRESSED AIR / VACUUM / COOLING


Sponsored by

for LIFE

evapco

Q&A Format

- Panelists will answer your questions during the Q&A session at the end of the Webinar.
- Please post your questions in the Questions Window in your GoToWebinar interface.
- Direct all questions to Chiller & Cooling Best Practices® Magazine

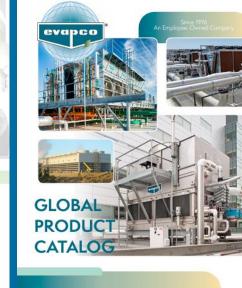
Handouts

hermal Capacity: wit(c) shall be selected

I. Adiabatic Mode

evapco for LIFE

Providing over 20 years of industrial cooling system expertise


WHY WATER SYSTEMS?

Cooling water systems are one of the most overlooked, yet essential, portions of the manufacturing process. Water systems are almost always:

Engineered very conservatively, using designs and concepts 20, 30, or more years old
 Production-critical, but frequendy operated within a broad performance envelope
 Not controlled to take advantage of seasonal conditions and load reductions

Consequently, systems typically run well below capacity and at significantly lower efficiencies than are possible. Hallmarks of these conditions include constant water flows pumped year-round, temperature control by cycling tower fans and part loading of chillers, and resolving system performance issues by blindly adding towers, pumping horsepower, etc. Operating in this manner negatively impacts EBITDA while simultaneously increasing capital.

SERVICES

Disclaimer

All rights are reserved. The contents of this publication may not be reproduced in whole or in part without consent of Smith Onandia Communications LLC. Smith Onandia Communications LLC does not assume and hereby disclaims any liability to any person for any loss or damage caused by errors or omissions in the material contained herein, regardless of whether such errors result from negligence, accident, or any other cause whatsoever.

All materials presented are educational. Each system is unique and must be evaluated on its own merits.

Sustainable, Safe & Reliable ON-SITE UTILITIES Powering Automation

Included with a \$50 Expo Hall Pass! Plenary Session Keynote Presentations Wednesday, October 30, 10:15AM – 12:00PM

The Plenary Session welcomes all EXPO, Exhibitor and Conference Attendees! Attendees will earn 2 PDH credits.

Lee Seela Mechanical Engineer – Energy Division, Black & Veatch

Philip Johnston, PE Technical Manager, Woodard & Curran

Alan Edington Global Energy Director, Gates

Sean Ferris Senior Manager Ride/Show – Facility Interface, Universal Creative

JOIN US IN ATLANTA OCTOBER 29-31, 2024

REGISTER TODAY! CABPEXPO.COM

At the end of the webinar, we are having a fun contest for a chance to win a free full conference pass valued at \$675!

Thermal Performance of Evaporative and Dry Cooling Systems

Introduction

Chiller & Cooling Best Practices® Magazine

Sponsored by

About the Speaker

 Principal Engineer, Integrated Services Group

• >25 years of experience in industrial energy efficiency

Clayton Penhallegon, Jr. Integrated Services Group

- Bachelor of Mechanical Engineering from Georgia Tech
- Registered P.E. for >30 years

CHILLER & COOLING

Sponsored by

for LIFE

evapc

- Evaporative and dry cooling (EDC) systems are a subset of general process cooling systems
- These systems are often energy-efficient and / or water-efficient when compared to chilled water systems
- Use of EDC systems require cooling loads that can satisfactorily operate at higher temperatures than typically provided from chilled water systems
- Presentation will cover distinctions between these alternatives and typical chilled water systems and how to assess applications

- Many industrial processes require liquid cooling systems
 - Remove more heat in given space than air heat rejection
 - Highly flexibility locations of heat capture and rejection (e.g. outside the plant)
- Systems over a certain size (≈ 1000 tons ±) typically use open loop cooling towers
 - Evaporative towers can reject very large amounts of heat in relatively small space
 - Common & familiar applications:
 - · Chiller condensers for chilled water systems, e.g. air conditioning and mold cooling
 - Large scale air compressor cooling
 - Injection molding machine hydraulics
 - · Very large applications like refineries, chemical plants, power generation

Need for Cooling Systems Alternatives

 Open towers evaporate ≈ 1% of the circulated water, which can be a significant issue in various locations due to water cost and / or availability

→ Nearly all heat removal is by the evaporation, not direct water (sensible) cooling

- Open systems often introduce dirt and other contaminants into equipment
- Air-cooled chillers are an option but they are high energy users (refrigerant cycles), typically 6 8X more energy vs. towers for same heat removal
- For selected applications, Dry Cooling systems and "Adiabatic" evaporationassisted systems can be efficient alternatives

Dry Cooling Systems Introduction

- Dry Cooling systems refer to circulating liquid cooling systems using coil-to-air heat rejection with a closed loop of water or oil going back to the machines
- · Car radiator is familiar dry cooling system

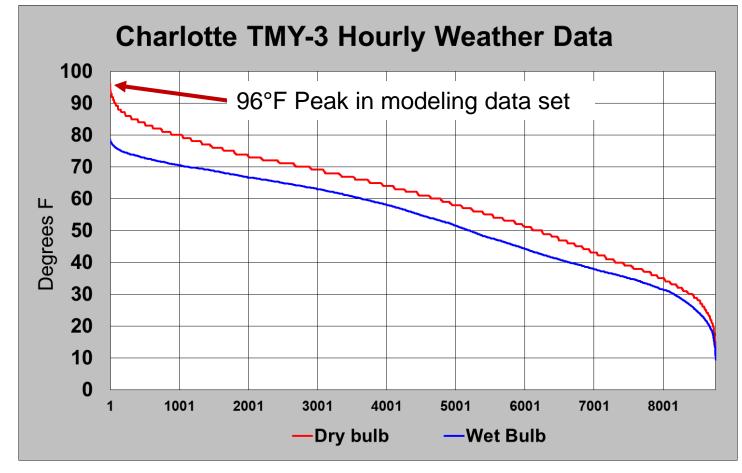
Example Dry Cooling Systems

Vertical "V" Style Dry Cooling Unit

Horizontal Dry Cooling Unit

Dry Cooling Systems Introduction

- Dry Cooling systems refer to circulating liquid cooling systems using coil-to-air heat rejection with a closed loop of water or oil going back to the machines
- Typically more efficient than refrigerant cycle systems,


But...

- Applications require cooling loads that can operate satisfactorily at higher temperatures than commonly provided from chilled water systems
 - Common coil approach temperatures are **15 20°F**
 - Supply In water temperatures of **110 115°F** @ 95°F air temp (higher at higher ambient)
- Require significantly more space for cooling units of equivalent rating
- Typically higher purchase and fan energy cost, lower <u>overall</u> operating cost due to water savings and associated other cost savings (chemical treatment, etc.)

Dry Cooling Temperature from Typical Weather Data

DC system could provide appx. 110°F LWT year round

875 Ton-R Process Custom Dry Cooling Tower

Dry Cooling Tower Erection

60 HP Fan Dry Cooling Tower

600 GPM @ 160 °F In, appx. 125°F Out with 100°F air temp

Dry Cooling Systems Potential Applications

- Air compressor gear lubrication cooling, e.g. high HP, multi-stage centrifugal (with separate, lower temperature aftercooler cooling)
- Hydraulic system cooling (sawmills, auto crushers, high temperature hydraulic presses, etc.)
- Warm temperature plastics cooling (polypropylene film, EPS cup molds)
- Rolling mill bearing cooling

Dry Cooling Systems Performance Maintenance

- Cooling effectiveness depends on several factors:
 - Original design temperature-approach capability
 - Liquid selection glycol solutions or oil do not perform identically to water
 - Coil exterior condition fin surface not excessively oxidized or corroded

→ Surface treatments to help AL or SS fins, exposure to accelerants (exhausts from plant, etc.)

- Air flow through coils surface blockage (debris), fouled screens*, fan failure
- Internal surfaces usually not the cause of problems but circulating liquid must be treated properly for closed loop system
- Cooling efficiency enhanced by fan control speed control (VFDs) better than staging, but either approach better than constant on, liquid-bypass operation

Air Flow Obstruction Example

- Screens to protect coils very prone to fouling
- Aggressive maintenance (cleaning / replacement) can provide air flow benefits
- Site selection critical to satisfactory performance of coil-based heat rejection systems
 - Don't use coils in the first place if environmental fouling potential too high – chicken vs. egg situation – if screens <u>required</u>, probably not a good location for coil application!

Chiller coil screen – L.A. Basin location

Dry Cooling Systems Drawbacks

- Many processes can't run at the temperatures available from pure DC systems
- "Adiabatic" or Evaporative-Assist Cooling Systems can meet more needs

Thermodynamics: An adiabatic process (adiabatic from Ancient Greek ἀδιάβατος (adiábatos) 'impassable') is a type of thermodynamic process that occurs without transferring heat or mass between the thermodynamic system and its environment (credit Wikipedia).

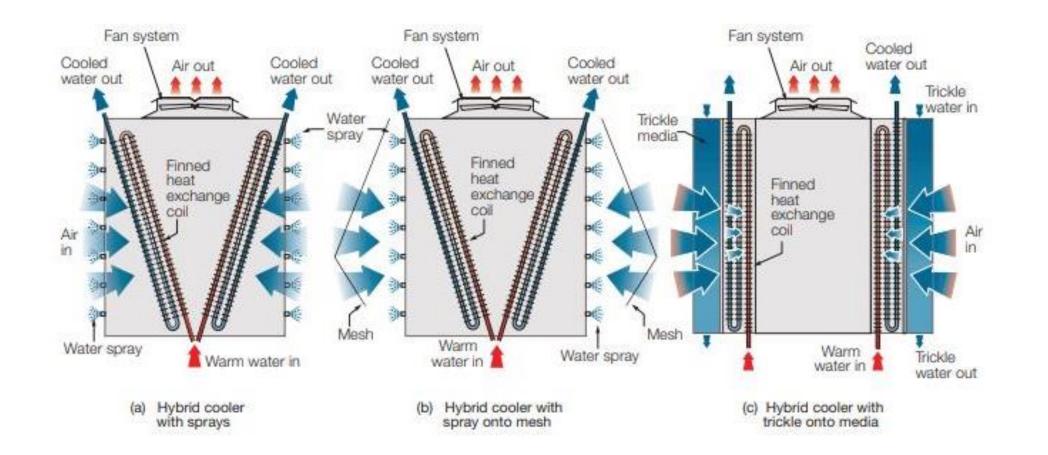
In meteorology, the adiabatic process primarily describes the action of heating or cooling a body of air without any energy exchanged with the surrounding atmosphere. The temperature changes occur as a result of an air pocket's compression or expansion due to pressure changes in the surrounding air.

"Adiabatic" or Evaporative-Assist Cooling Systems

- Dry cooling systems can provide temperate water (<90°F) much of the year depending on location and climate
- Summer high temperatures result in Leaving Water Temperatures (LWT)(from coil, to process) of 115 – 120°F @ 100°F air temp
- So-called Adiabatic systems use an evaporating water spray or saturated pads to cool the air toward the wet bulb temperature

Example Adiabatic Cooling Systems

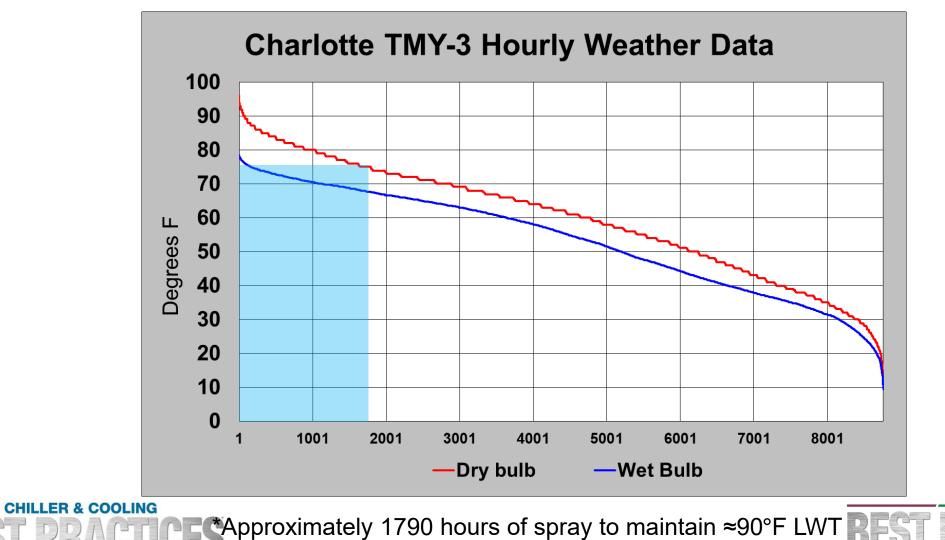
Vertical "V" Style Pad Adiabatic Cooling Units



Spray Adiabatic Cooling Unit

Adiabatic Cooling System Evaporative Types

"Adiabatic" or Evaporative-Assist Cooling Systems

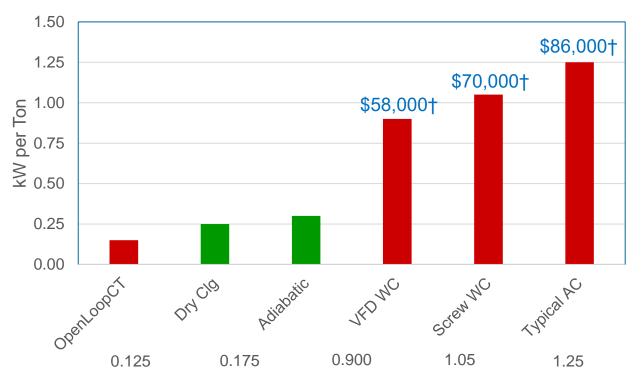

- Dry cooling systems can provide temperate water (<90°F) much of the year depending on location and climate
- Summer high temperatures result in Leaving Water Temperatures (LWT)(from coil, to process) of 115 – 120°F @ 100°F air temp
- So-called Adiabatic systems use an evaporating water spray or saturated pads to cool the air toward the wet bulb temperature
- Evaporation-assist cooled air is usually around 10 15°F cooler at summer conditions than the dry bulb air temp, e.g. roughly 83 - 85°F for wet bulb of 78 °F
- Adiabatic systems can enable use of *non-refrigerant* cycle cooling on additional loads, LWTs of 95 – 90°F except limited number of peak hours

Typical Weather Data

coolinghestpractices.con

Adiabatic Cooling Systems Potential Applications

- Same as Dry Coolers except more of it:
 - Hydraulic system cooling
 - Packaged air compressors and vacuum pumps including flooded screw, oil-free, aftercoolers before refrigerated dryers
 - High HP air compressors gearbox cooling, interstage air coolers, aftercooler
- Rubber, synthetic rubber mold curing
- Medium temperature plastics uses film cast rolls, injection molding, etc.


Adiabatic Cooling Systems Performance Maintenance

- Water spray effectiveness dependent on nozzle condition, water quality
- Pad system effectiveness dependent on uniform water distribution (no channeling)
- Most useful wetting completely evaporates leaving no water droplets to fall out of stream (wasted water), impinge on the coils (collects dirt), or drain off
- Pads and / or screens must be kept reasonably clean reduced airflow from fouling can more than offset benefit from evaporation

Dry Cooling & Adiabatic Systems Efficiency & Savings

VFD WC – centrifugal chiller with VFD , typical system, typical controls Typical WC – standard water-cooled screw chillers, typical system, typical controls Typical AC – air-cooled screw chillers, standard pumping and control

†Cost premium basis – vs. Adiabatic, 100 tons, 8000 hours / yr, 100% run factor, 10¢ / kWh power cost

Dry Cooling & Adiabatic Systems Cost Per Ton

Open Loop Cooling Tower – cooling tower, pumps, typical system, typical controls VFD WC – centrifugal chiller with VFD, typical system, typical controls Typical WC – standard water-cooled screw chillers, typical system, typical controls Typical AC – air-cooled screw chillers, standard pumping and control

Basis – Heat rejection and required associated equipment (pumps, towers, etc.) – no sq. ft. costs included

Evaporative & Dry Cooling Systems Summary

- EDC systems are great options for process cooling
 - Significant water savings vs. cooling tower systems
 - High efficiency compared to chilled water systems, whether air-cooled or water-cooled
- Application of EDCs requires care to ensure that the processes can satisfactorily operate at the available temperatures
- Maintaining good airflow through the coils is critical to getting good results
 - Total cooling capability
 - Lowest return temperatures from the system

About the Speaker

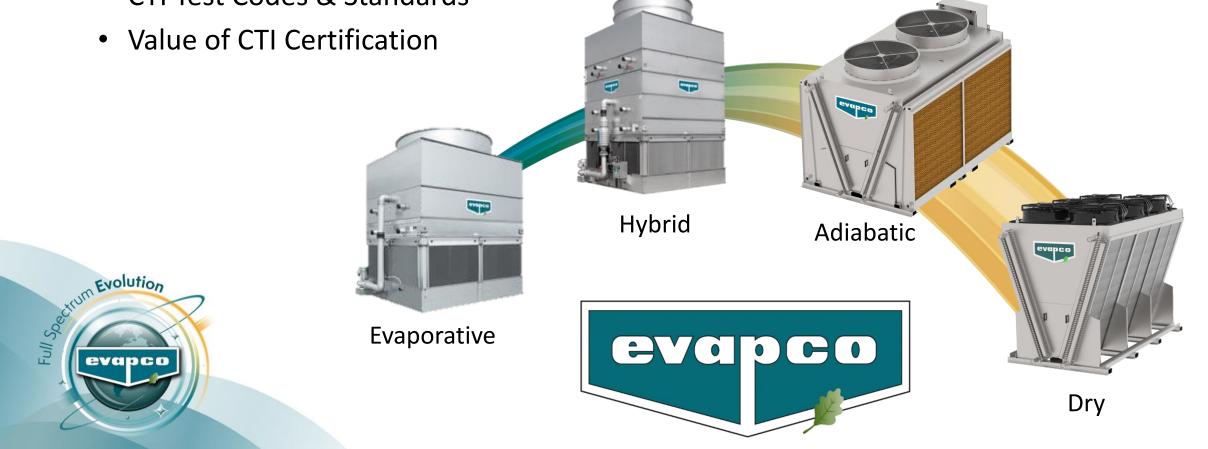
Bobby Becker

- Senior Global Products Manager at EVAPCO
- 14 years of experience at EVAPCO
- Bachelor degree in Mechanical Engineering from the University of Maryland, College Park

Sponsored by

The Significance of Thermal Performance Certification for Heat Rejection Equipment

Bobby Becker Senior Global Products Manager



Significance of Thermal Performance Certification

Presentation Outline:

- Importance of CTI Certification •
- **CTI Test Codes & Standards** •
- •

The Importance of CTI Certification

Customers have many options and manufacturers to choose from:

Lacking certification, customers must rely on the manufacturer's <u>published</u> ratings

15-20% overstated thermal performance rating means....the unit will underperform when it matters the most

Underperforming units will consume more energy and water, and will miss temperature setpoints

The Importance of CTI Certification

Sectrum Evolution

Cooling Tower – Industrial Load Profile in Baltimore, MD

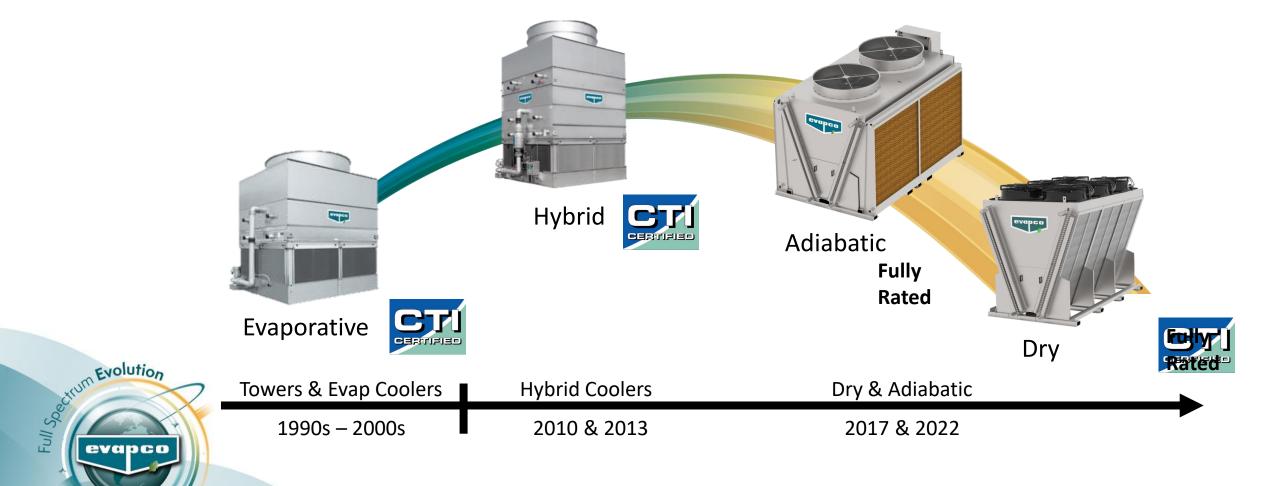
9,000 GPM of Water, 95°F Inlet / 85°F Outlet @ 78°F Ambient Wet-Bulb

	Current CTI Certified AT Cooling Tower		Pre-CTI Certification Cooling Tower (typical)
Percent Capacity	101.7%		87% (selected at 100%) **
Overall Unit Dimensions (LxWxH)	24'x36'x19'	<mark>6% larger</mark>	24'x36'x18'
Connected Fan Motor Power	240 HP	50% greater	160 HP
Annual Energy Usage	142,494 kWh	<mark>15% less</mark>	165,107 kWh

This unit **will not meet 95F/85F temps for almost 100 hours per year in Baltimore, Maryland

The Importance of CTI Certification

Soctrum Evolution

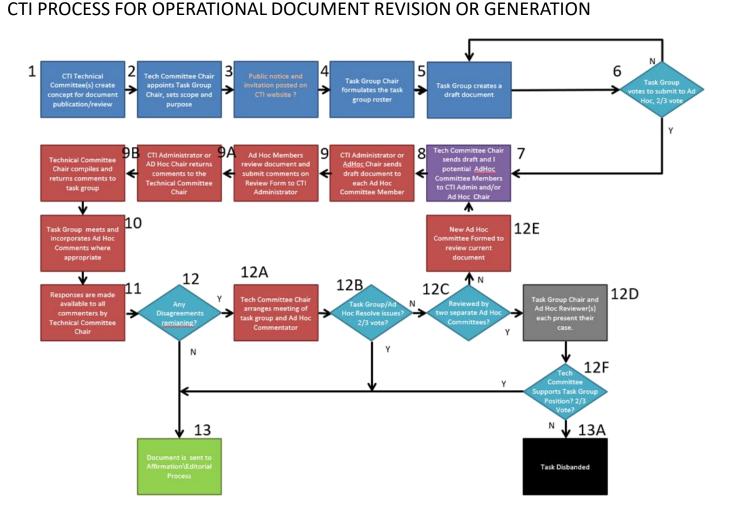

Dry Cooler – Industrial Load Profile in Baltimore, MD

2,000 GPM of Water, 120°F Inlet / 110°F Outlet @ 95°F Ambient Dry-Bulb

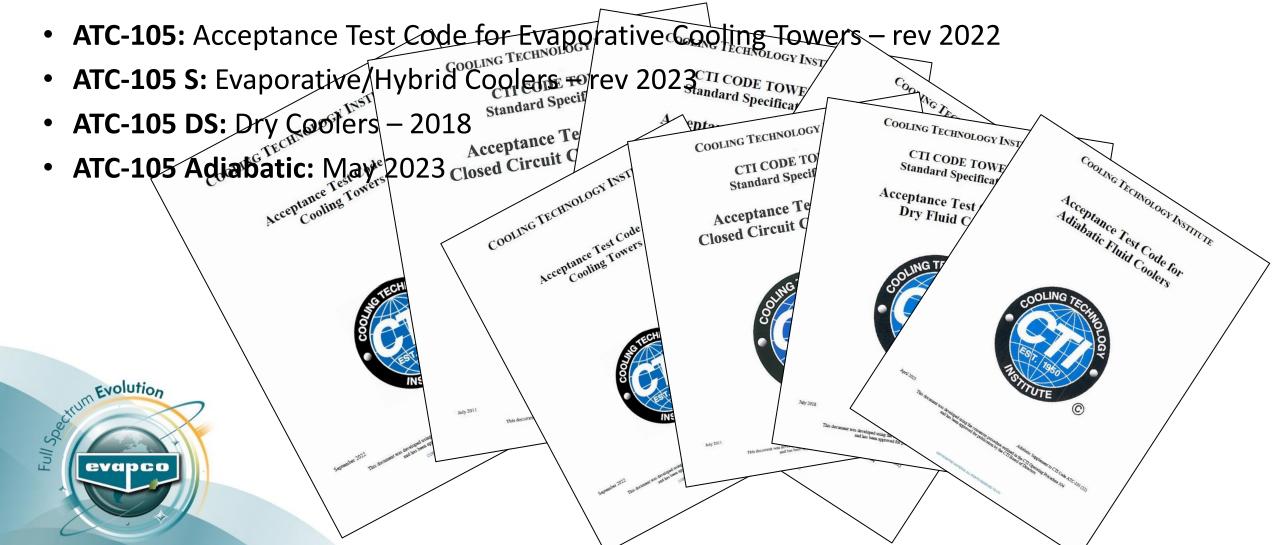
		Current CTI Certified EVAPCO Dry Cooler		Current Non-CTI Certified Dry Cooler
Ρ	ercent Capacity			78.7% (selected at 100%) **
C	Overall Unit Dimensions (LxWxH)			12'x26'x19'
Н	leat Transfer Surface Area	126,041 sqft	14% greater	110,954 sqft
С	connected Fan Motor Power	150 HP	<mark>25% greater</mark>	120 HP
A	nnual Energy Usage	60,957 kWh	44% less	109,422 kWh

This unit **will not meet 120F/110F temps for almost 150 hours per year in Baltimore, Maryland

The Evolution of CTI Certification



CTI Test Codes & Standards


- Need for New/Revised Code or Standard is Motioned
- Task Group is Formed

Sectrum Evolution

- Draft Document/Revision
- Reviewed by 3rd Party Group
- Reviewed by CTI Board for Adoption

CTI Test Codes & Standards

CTI Test Codes and Standards

Significance of Thermal Performance Certification

CTI Test Codes and Standards

To Achieve CTI Certification, Manufacturers Must:

- Test Thermal Performance by a CTI Licensed Test Agency
 - Annual Reverification Required
 - Model(s) Selected by Thermal Certification Administrator
- Submit "Data of Record" to CTI
- Pay Testing & Certification Fees
- Publish Data to the Public
 - Manufacturer Website
 - Selection Programs
 - <u>www.cti.org</u>

Dry Cooler Test in EVAPCO R&D Lab

Limits of CTI Thermal Certification

Soetrum Evolution

	SI Units	IP Units
Wet Bulb Temperature	10°C to 32.2°C	50°F to 90°F
Maximum Process Fluid Temperature	51.7°C	125°F
Minimum Range	2.2°C	4°F
Minimum Approach	2.8°C	5°F
Barometric Pressure	91.4 kPa to 105 kPa	27 in Hg to 31 in Hg

The STD-201 Limitations of Certification establish ranges of conditions under which the product lines may be accurately tested. The buyers of certified products are advised that if their specific design conditions fall outside of the STD-201 limitations of certification, then the capacity of any model selected (from any manufacturer) would not be certified by CTI.

Licensed CTI Test Agencies will not conduct a test outside of these conditions.

Limits of CTI Thermal Certification

Example: Cooling Tower

Design Conditions: 78°F Inlet / 69°F Outlet @ 66°F Ambient Wet-Bulb

Unit Comparison	78°F/69°F/66°F % Capacity	Nominal Conditions 95°F/85°F/78°F	Nominal Conditions % Capacity
Brand X	100%	1,007 Tons	100%
EVAPCO	86.4%	1,045 Tons	103.7%
Brand Y	89.7%	1,011 Tons	100.3%

Limits of CTI Thermal Certification

How to Handle this.... EDUCATION

- Discuss the Importance/Value of CTI Certification & Temperature Limits
- Schedule 2nd Set of Conditions within CTI Limits
 - Another Data Point will Expose Overstated Capacity Outside of Limits

	L	SUMMER CAPACITY				WINTER CAPACITY				ING AIR I
	CHILLE CHILLE CHILLE CHILLE CHILLE CHILLE	PEAK FLOW RATE (GPM)	EWT (°F)	LWT (°F)	ENTERING AIR WET BULB (°F)	FLOW RATE (GPM)	EWT (°F)	LWT (°F)	ENTERING AIR WET BULB (°F)	ULB (*F) 9.4 9.4 9.4 9.4 9.4 9.4
Evolution	CHILLE	1800	95	85	78	1440	50	40	29.4	9.4 9.4
Section Evolution										

The Value

So etrum Evolution

EVAPCO INC.

- Ensure a Level Playing Field
 - Specify CTI Certified Equipment
 - Purchase CTI Certified Equipment Equipment Disclosures R24.pdf
- Engineers & Owners can Rest Asseured that Disclosures.pdf Their Equipment will Perform as Rated C13E Evapco ESWA ESWB and ESW4 Disclosures.pdf

C13F Evapco ATWB Disclosures.pdf

C13G Evapco LSWE and LRWB Disclosures.pdf

C13K Evapco AXS Disclosures.pdf

C13M Evapco EAW Disclosures.pdf

Find EVAPCO & Other Manufacturer's CTI Certified Products on <u>www.cti.org</u>

The Value of CTI Certification

eco-Air Series Specification Language: apco

- If the Units are Suspected to be Deficient in Thermal Capacity, the Owner has the Right to Request a Dry Mode Fell of herman derection and the Products at Their Own Expense.
- If the Test Provense the test shall be conducted by an index design now rate.
 - Shall Reimburster shall be given a minimum thirty (b) tay notice prior to the test wate and and be allowed to both pre-inspect the unit and witness the test.
 - Shall Absorb the and the specified Specified How the unit capacity to be less than the guaranteed Thermal Capacity to guar
 - Shall Pay for
 In equipment manufacturer shall then pay to have the modified/corrected units re-tested per ATC-105DS to confirm the corrective actions have improved capacity to the guaranteed THERMAL CAPACITY
 If the equipment manufacturer shall then pay to have the modified/corrected units re-tested per ATC-105DS to confirm the corrective actions have improved capacity to the guaranteed THERMAL CAPACITY, the manufacturer shall provide new units which provide the specified thermal capacity free of charge and the modified/correct tested per ATC-105DS to confirm they meet the guaranteed THERMAL CAPACITY if the test on t
 - Shall Provide New Construction of the state of the state

Significance of Thermal Performance Certification

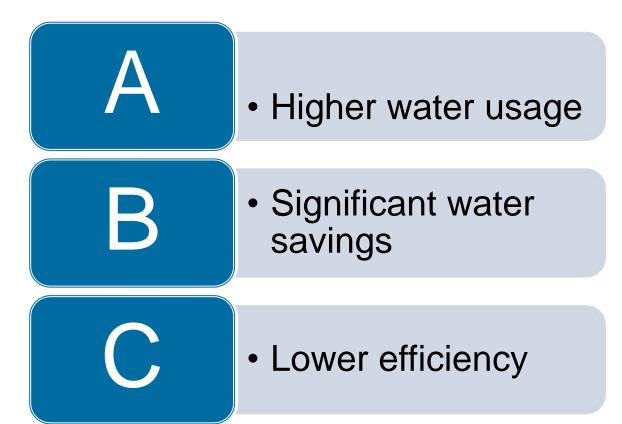
Wilson E. Bradley Research & Development Center Taneytown, MD

Contact Information:

Robert.Becker@evapco.com P: 410-756-2600

THANK YOU!

So etrum Evolution

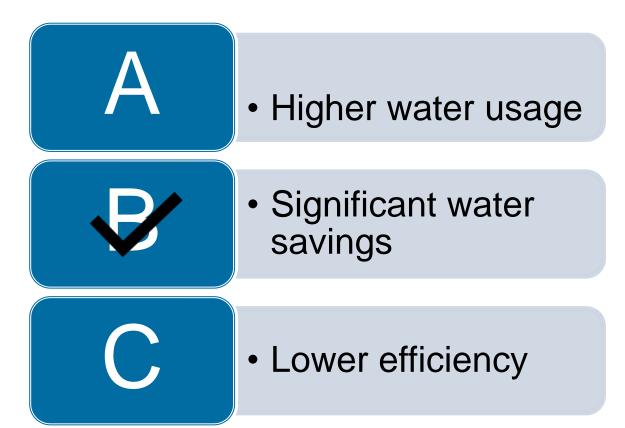


Best Practices EXPO Contest

Play for a chance to win a **FREE Full Conference Pass** to the Best Practices 2024 EXPO & Conference!! This is a \$675 value! This contest is open to factory personnel, compressed air distributors, utility incentive programs and engineering firms. Exhibiting and sponsor companies are not qualified. Winners will be randomly selected from those who submitted a correct answer and notified tomorrow via email.

Please submit your answer in the upcoming poll

What is one key benefit of Evaporative and Dry Cooling compared to cooling tower systems?


*By entering you are giving permission to announce your name if you are a winner BEST PRACTICES EXPO & CONFERENCE CABPEXPO.COM COMPRESSED AIR / VACUUM / COOLING

Best Practices EXPO Contest

Play for a chance to win a **FREE Full Conference Pass** to the Best Practices 2024 EXPO & Conference!! This is a \$675 value! This contest is open to factory personnel, compressed air distributors, utility incentive programs and engineering firms. Exhibiting and sponsor companies are not qualified. Winners will be randomly selected from those who submitted a correct answer and notified tomorrow via email.

Please submit your answer in the upcoming poll

What is one key benefit of Evaporative and Dry Cooling compared to cooling tower systems?

*By entering you are giving permission to announce your name if you are a winner BEST PRACTICES EXPO & CONFERENCE CABPEXPO.COM COMPRESSED AIR / VACUUM / COOLING

Thermal Performance of Evaporative and Dry Cooling Systems Q&A

Please submit any questions through the Question Window on your GoToWebinar interface, directing them to Chiller & Cooling Best Practices Magazine. Our panelists will do their best to address your questions and will follow up with you on anything that goes unanswered during this session. **Thank you for attending!**

Sponsored by

The recording and slides of this webinar will be made available to attendees via email later today.

PDH Certificates will be e-mailed to Attendees within 2 days.

September 2024 Webinar Aeration Blower Sizing and Selection

Tom Jenkins, PE JenTech Inc. Keynote Speaker

Thursday, September 12, 2024– 2:00 PM EST

Register for free at <u>www.airbestpractices.com/webinars</u>

Sponsored by

Built for a lifetime.

