Industrial Utility Efficiency    

Cooling Towers

Cooling tower customers want product innovations that can give them a greater amount of cooling for the energy used. In this age of shrinking operational budgets, they also seek ways to reduce installation and maintenance costs. These customer needs cut across industry lines, whether for light industrial or heating, ventilation and air conditioning (HVAC) applications, or for power and process cooling operations.
Cooling towers may contain a variety of combustible material, including polyvinyl chloride (PVC) fill, fiberglass reinforced polyester (FRP) casing, fan stacks, fan decks, fan blades, and acrylonitrile butadiene styrene (ABS) and polypropylene nozzles, as well as wood and fiberglass structural components. Functioning cooling towers may also contain dry areas that could catch on fire when water flow is temporarily suspended during maintenance, or repairs involving electrical work or welding. In addition, fire damage in cooling towers can extend to the tower’s adjacent cells and to nearby buildings or equipment.
AHR EXPO is an incredible, powerhouse of a show for all involved in the cooling system industry. Since 1930, the Show has provided a unique forum for the entire HVACR industry, including OEMs; engineers; contractors; manufacturers; distributors; commercial, industrial and institutional facility operators.
This article contains pieces from an audit report developed for a fish processing plant located in Yangon, Myanmar. is located in the Thinbawgin Ward of Dawbon Township in Yangon, Myanmar.  The objective is to show factories the information they may want to have gathered on their refrigeration systems and supporting cooling systems.
Gearboxes are used as speed reducers to slow the rotational speed from the incoming motor to the outgoing fan of a cooling tower. Companies operating high-capacity production plants, such as those in the chemical process and power industries, require cooling towers with large amounts of heat rejection capacity. Without gearbox technology, cooling tower motors would be massive to directly handle the torque required by the fan. Something so large and heavy would be too expensive and impractical.
The demand for advanced computing power rises year after year, but the more powerful the system, the more heat it generates. As data centers grow, they place higher demands on cooling equipment. Packing as much kilowatt and computer usage into as small a space as possible is key to reducing the cost and size of the facility. In doing this, data centers increase the power density of their systems, drawing more power, and generating more heat per unit area.
If you enjoy the occasional beverage from an aluminum can, there’s a decent chance the can was made by Ball Corporation, a container manufacturing giant with facilities across the world. The company’s facility in Saratoga Springs, New York, services beverage companies throughout the northeastern United States. The plant operates four production lines producing millions of aluminum cans per day.
The number of data centers in the United States continues to grow in response to the enormous amount of digital information stored and streamed. The massive computer power within these data centers generates heat, making efficient cooling a key building system requirement. Evaporative cooling towers are an integral part of many data center cooling systems.
Recent developments in factory-assembled cooling tower technology can increase cooling capacity per cell by up to 50%, expanding the applications for so called “package” towers supporting HVAC and industrial processes. Although field-erected towers have long been the preferred product for process cooling in power plants and heavy industry, new robust designs and materials coupled with cost-saving building techniques now make a new generation of modular products logical alternatives for a broader range of applications.  
Anecdotal reports from users of Tower Tech cooling towers across the U.S. have indicated the Tower Tech design provides substantial savings to the customer both in terms of lower chemical treatment requirements and substantial water savings. There are a number of mechanisms by which the Tower Tech design facilitates efficient, lower cost water treatment and usage. A few are described in this article.
The first and most important process unit in petrochemical processing is ethylene. It is the starting point for the vast majority of other petrochemical processes that derive their feedstocks from ethylene. If this unit is forced to reduce its throughput due to an equipment-related issue, it could spell economic disaster for a plant. Unfortunately, that is exactly what happened to a Gulf Coast petrochemical processor’s primary facility. It experienced a collapse in the cooling tower that supported the ethylene unit, which compromised the structural integrity of the equipment. Worse yet, it was estimated that it would take one month to repair the two damaged cells. The affected facility would need to reduce the feedstock to its downstream units by 20 to 40 percent to compensate for the lost cooling capacity. The economic impact of the cooling tower failure was estimated at $5,000,000 per day.