Chillers

An Illinois protective packaging manufacturer was able to reduce their cooling costs by over 60% while also saving around $100,000 each year on system maintenance by replacing their old system with high-efficiency equipment and a streamlined hydronic design.  Helped by ComEd efficiency incentives, the plant captured these benefits through an under 2.4 year payback system upgrade project.

With the approaching HFC phasedown, the demand for environmentally friendly cooling systems is driving chiller manufacturers to innovate. Washington-based Pro-Refrigeration, Inc., a leading manufacturer and supplier of chillers for the industrial and beverage processing market, including the dairy, beer and wine industries, recognized an opportunity with CO2 chillers. 
Like many universities across America, The University of Cincinnati had a major challenge having to operate aging central utility plants with older technology, reduced efficiencies and capacities, with chilled water equipment at the end of its service life. Even so, UC needed to maintain plant operations under diverse load conditions, including critical hospital utility demands that are currently expanding and in daily periods subject to energy tariff.
A technology called, “cool storage” offers a reliable, cost-effective means of managing electricity costs while ultimately helping to limit greenhouse gas emissions. The technology allows facilities to take advantage of less costly electricity available at night and functionally save that energy for use at a later time. Cool storage achieves this performance by using ice or chilled water as a medium for storing and deploying energy.
For the Production Support team at the expansive Quad printing plant in Sussex, Wis., there isn’t one way to manage the operation’s complex and elaborate process cooling system. Rather, the formula for success involves a three-pronged approach that includes carefully measuring and monitoring system performance, diligently and proactively maintaining equipment to ensure peak efficiencies, and investing in updated equipment based on sound decision making. 
Since its inception, MDW has seen growth in air travel. To handle the increased passenger volume and modernize the airport, a larger terminal went under construction in 2000 and was completed in 2004 as part of a terminal development program. The program also included a new Central Heating and Refrigeration Plant (CHRP), which was completed in 2000 to serve the increased cooling and heating needs of the new terminals. The CHRP was a separate contract from the terminal modernizations and was awarded using a third-party design build contract. Unicom Thermal Technologies (UTT) was awarded the project with Hill Mechanical Group (HMG) as its contractor. 
For U.S. Flue-Cured Tobacco Growers, Inc. (USFCTG) sustainability is a guiding practice for tobacco production from seed to delivery. So when traditional chemical water treatment had proven problematic in air washers at its plant in Timberlake, North Carolina, the company thought outside the box for solutions to address a variety of issues while also supporting its sustainability goals. 
Do water-cooled chiller plants still deliver lower utility bills? Today, many chiller plant energy analyses carefully account for energy costs, and even energy escalation rates – a factor that projects how fuel costs will increase over time, while ignoring water and wastewater costs associated with cooling towers. While highly effective at transferring heat, cooling towers consume millions of gallons of water each year through the process of evaporation, drift, and blowdown. With the rising cost of water and wastewater, this omission can result in an incomplete picture for the building owner.
The 2020 AHR Expo, the world’s largest HVACR event, was held February 3-5, at the Orange County Convention Center in Orlando, Florida. Supported by event co-sponsors, ASHRAE and AHRI, along with 31 other major industry organizations, and more than 1,900 exhibiting companies, AHR Expo is the industry’s largest global marketplace to network, share best practices and learn about innovative solutions from all over the world. With more than 200 free seminars, the education program featured new product and technology presentations, professional certifications, and education sessions focused on general industry-wide topics, engineering, industry trends, and topics tailored to attract the OEMs, engineers, contractors, facility operators, architects and other HVACR industry professionals from more than 160 countries.
The need to pay close attention to the university’s central chiller plant has always been a priority given the energy required to power the chillers, said Michael Bolien, Manager of Central Plant Operations, University of Tulsa. At TU, seven water-cooled chillers provide 7,000 tons of cooling capacity to all university facilities. “Over the past five years, TU has had a 17% increase in cooling load, based on the square footage of new buildings. Because our central chiller plant is our biggest energy user, optimizing its operations is our first line of defense,” said Bolien.
Chillers are an essential component in many building Heating, Ventilation and Air Conditioning (HVAC) systems. They provide cooling to the building by working in tandem with pumps and cooling towers in a water-cooled chiller plant. Because of the chiller’s complexity and its role in cooling facilities, it is arguably the most important piece of equipment to maintain.