Industrial Utility Efficiency    

Water Filtration

Water treatment professionals understand that if applied correctly, solid-form products can be just as effective of a method to protect cooling and heating systems from corrosion and scale as their liquid counterparts. And with the additional sustainability, safety, ease of use, and shipping cost benefits of solids, hundreds of facilities are transitioning to these products each year world-wide.
One of the most important steps in the mold making process is a consistent and proper cooling cycle. This is due to the fact cooling rates can have a significant influence on the overall quality of the finished item. The cooling cycle must remain consistent throughout the entire production run to ensure all items are equal in quality.
Industrial cooling and refrigeration equipment used in manufacturing and environmental control rely heavily on water to either cool, or otherwise regulate product or formulation temperature during processing. While such equipment can appear to function efficiently without input of truly pure water, the unknown cumulative build-up of scale and corrosion would be costly due to high maintenance, related damage, reduced efficiency, and ultimately, premature equipment failure.
ElectroCell Systems, Inc., manufactures a system for commercial, industrial and institutional facilities that is applied to conventional water-cooled chilled water plants. The system significantly improves efficiency in water and energy use with paybacks in the 2.0 to 3.5 year range. The system is not a substitute for chemical treatment; rather it is a Condenser Water Efficiency system, engineered specifically and solely to increase water and energy efficiency by addressing the uniquely challenging demands that exist only in the condenser water loop.
Cooling towers dissipate both ambient and process heat in most large manufacturing facilities. These structures facilitate the transfer of unwanted energy (heat) from a transport liquid (usually water) to the atmosphere. Problems with efficient heat transfer, equipment protection and pathological risks to employees can most often be traced back to an issue with suspended solids. These solids can originate in the process, in the piping, from the atmosphere or from internal biological growth.