Chillers

Absorption chillers have been around for more than 75 years, with several thousand chillers operating successfully all over the world today. Yet myths about cost, operation and performance surround this technology, particularly in North America. Look beyond the myths and you’ll discover absorption cooling technology can be efficient, cost-effective, flexible and reliable.

The Smardt Chiller Group has manufacturing operations in North America, Asia Pacific, China and Europe.  Our main North American plant and headquarters is in Dorval (Quebec) complemented by our Plattsburgh (New York) plant which serves government and other clients requiring a “Made in the U.S.A.” certificate.  Asia Pacific manufacturing is done in Melbourne (Australia) and we have launched a manufacturing plant in Guangzhou to serve China. The European market is served out of our plant in Stuttgart (Germany).  North America and Asia Pacific make up 80% of our business with the balance coming from Europe and China –which are our fastest-growing geographies.
While the chiller is the heart of a chilled water system, its support system of components and controls are equally critical to maintain and manage to ensure the highest system efficiency levels are attained. Emphasis is often placed on the chiller since it is the most visible and typically the highest energy element of a chilled water system. Yet, if you look beyond the flanges, there’s an opportunity to improve delivery of chilled water to the airside or process loads and maximize system efficiency.  
Plastics processors are looking to advanced process cooling equipment to lower operational costs, and in many cases, improve the quality of products and achieve sustainability goals. But it’s more than just a matter of finding a better mousetrap and putting systems to work. Instead, it requires a keen understanding of the processes involved, followed by the design and installation of advanced technology in combination with the right process cooling systems matched to a company’s goals.
Intelligent process cooling describes an approach to cooling in beverage production and packaging that moves beyond evaporative cooling towers and the use of traditional central chiller systems that rely on ammonia as a refrigerant. Unlike traditional methods, it intelligently matches process cooling systems to individual cooling loads without an evaporative process or the use of ammonia to gain verifiably better results in energy efficiency, water use, and safety.
What do the beginnings of innovative businesses have in common? Certainly abstract attributes like creativity, intelligence and dedication all play a part, but in many cases the origins of great businesses have another, more concrete thing in common — a garage. Amazon, for instance, was originally founded by Jeff Bezos in his garage. Walt and Roy Disney made some of their first animated films in their uncle’s garage. And, last but not least, Steve Jobs, Steve Wozniak and Ronald Wayne designed the first Apple computer in a garage.
It’s been more than a decade since oil-free magnetic bearing centrifugal compressors hit the HVAC market. With unheard-of part-load energy efficiency and zero oil-related maintenance, these ultra-quiet machines are totally sustainable because there is no oil to change the heat transfer rates in the heat exchangers. Now there are more than 35,000 of them out there logging over 55 million run-hours, and all of them have an initial cost premium.
No matter what your application, there is a single formula for determining the size of chiller you need. There also industry-specific, rules-of-thumb for chiller sizing. These may vary depending upon the application. These guidelines and formulas may be used for sizing chillers for plastic process cooling applications.
Process cooling system applications experiencing constant production loads generating high process fluid temperatures are particularly good candidates to take advantage of low ambient temperatures. Low ambient temperatures can be used as a “free” energy source, replacing the electricity required to run refrigeration compressors, in what is known as a free-cooling chiller system.
Pepco Energy Services’ (PES) Midtown Thermal Control Center (MTCC) in Atlantic City, New Jersey, sells chilled water and steam to multiple Atlantic City casinos, Boardwalk Hall and Pier Shops. PES is also responsible for stand-alone remote heating and cooling plants for the Atlantic City’s major casino’s as well as the Atlantic City Convention Center including its 2.4 Mw solar array.
When compressed air is generated, heat is inevitably produced as a by-product. Anyone looking to enhance efficiency can use this heat and increase the efficiency of compressors to about 95 percent as a result. To achieve this, there are easy-fit heat exchangers which can be fitted to existing air compressor stations. This investment often pays for itself within less than a year.